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Abstract. Interface problems have wide applications in modern scientific research.
Obtaining accurate numerical solutions of multi-domain problems involving triple
junction conditions remains a significant challenge. In this paper, we develop an
efficient finite element method based on non-body-fitting meshes for solving multi-
domain elliptic interface problems. We follow the idea of immersed finite element by
modifying local basis functions to accommodate interface conditions. We enrich the lo-
cal finite element space by adding new basis functions for handling non-homogeneous
flux jump. The numerical scheme is symmetric and positive definite. Numerical ex-
periments are provided to demonstrate the features of our method.
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1 Introduction

The elliptic interface problems have raised much attention in the past decades and related
numerical methods have been developed for solving interface problems accurately and
efficiently. Conventional numerical methods, such as finite element method (FEM) [8],
can be used to solve interface problems. These methods require the mesh to fit the inter-
face; thus they are sometimes called fitted-mesh methods. A limitation of these methods
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is that the solution mesh has to be regenerated when dealing with a moving interface
problem because of this body-fitting restriction.

Many numerical methods based on non-body-fitting meshes have been developed for
solving interface problems. In the finite difference framework, since the pioneering work
of Peskin [25] on the immersed boundary method, there have been the immersed inter-
face method [20], the matched interface and boundary (MIB) method [30], the kernel-free
boundary integral method [29], the embedded boundary method [16] and the cut-cell
method [19]. In the finite element framework, there are generalized FEM [4], extended
FEM [9], cut FEM [12] and the immersed finite element (IFE) method [21]. The IFE
method was first introduced in [21] for one-dimensional interface problems with piece-
wise linear polynomial approximation. Since then, the method has been extended to
multi-dimensional problems [10, 13, 22, 23], higher order approximations [2, 3, 6, 7] and
interface problems of other partial differential equation models [1, 15, 24]. Moreover, the
IFE method has also been extended to non-homogeneous flux jump conditions [11, 14].

So far, most IFE methods in the literature are designed to solve interface problems
with two sub-domains. When it comes to multi-domain problems with intersecting in-
terfaces, such as problems with triple interface junction points, the complexity of the
problems will inevitably increase. There are a few numerical methods developed for
multi-domain interface problems. In [17], the authors developed a Petrov-Galerkin type
method for multi-domain problems with triple junction conditions and triple junction
points, which is an extension from two-domain interface problems [18]. Another method
is based on MIB framework [28] for scalar jumping coefficients. The bandwidth of the
sparse linear system in [28] is usually larger than that in [17]. Some more recent work on
multi-domain interface problems include the three dimensional problem in [26] and the
elasticity problem in [27].

In this paper, we propose a numerical method based on IFE methods for solving the
elliptic interface problem with triple-junction interfaces. We present the construction of
IFE basis functions on interface elements with triple-junction points. Local and global
IFE spaces will be formulated accordingly. Moreover, we extend the construction for
handling the non-homogeneous flux jump following the idea in [14]. Compared with
previous methods in [17], there are two improvements in the method in this paper. First,
the construction of IFE basis function covers more types of geometrical configuration of
interface elements. To be more specific, there is no need for the assumption in [17] that
a triple junctional interface must intersect with three different edges of an element. The
second advantage of this method is that the stiffness matrix of linear system is always
symmetric positive definite, compared with the non-symmetric positive definite matrix
in [17].

The rest of article is organized as follows. In Section 2, we introduce the elliptic inter-
face problem with multi-domain and triple junction interfaces and derive its weak formu-
lation. In Section 3, we construct the local IFE basis functions and the non-homogeneous
flux basis functions on different types of interface elements. Then we formulate the local
and global IFE spaces and apply them for solving the multi-interface problem. In Section
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4, some numerical experiments are provided to demonstrate the accuracy of our method.
Brief conclusion is drawn in Section 5.

2 Interface problems and weak formulation

In this section, we first describe the elliptic equation with multiple intersecting interfaces.
Let Ω⊂R2 be an open bounded domain. We assume that Ω is divided by multiple

interfaces into subdomains. Without loss of generality, we consider the case with three
intersecting interfaces. We assume that the interfaces Γ1, Γ2 and Γ3 divide Ω into disjoint
open subdomains Ω1, Ω2 and Ω3. We also assume that the boundaries ∂Ω and ∂Ωi,
i=1,2,3 are Lipschitz continuous. The unit normal vectors of Γi, i = 1,2,3 are denoted
by ni. The intersecting points of Γi are called the triple junction point. See Fig. 1 for an
illustration of the geometrical setting.
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Figure 1: A typical triple-interface domain.

We consider the following elliptic interface problem defined on this triple junction
domain:

−∇·(β∇u)= f in Ω1∪Ω2∪Ω3, (2.1a)
u= g on ∂Ω. (2.1b)

Here, the coefficient function β is discontinuous across the interfaces such that β(x)= βi,
for x∈Ωi, i = 1,2,3 where βi > 0 are positive constants. The source function f and the
boundary function g are given. For simplicity, we denote gi = g|∂Ω∩∂Ωi from now on.
Across the interfaces Γi, the solution u is assumed to be continuous, i.e.,

[u]Γi =0, ∀i=1,2,3. (2.2)
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The normal flux jump are prescribed as follows:
[β∇u·n]Γ1 =(β3∇u3−β2∇u2)·n1=b1(x,y) on Γ1,
[β∇u·n]Γ2 =(β1∇u1−β3∇u3)·n2=b2(x,y) on Γ2,
[β∇u·n]Γ3 =(β2∇u2−β1∇u1)·n3=b3(x,y) on Γ3.

(2.3)

Here, ui =u|Ωi and bi, i=1,2,3 are given functions defined on Γi.
Multiplying the Eq. (2.1a) by a test function v∈H1

0(Ω), taking integral on each sub-
domains Ωi and using Green’s formula and the jump conditions (2.2)-(2.3), we can obtain
the variational form of the interface problem: Find u∈H1(Ω) such that u|∂Ω = g and

3

∑
i=1

∫
Ωi

β∇u·∇vdxdy=
∫

Ω
f vdxdy−

3

∑
i=1

∫
Γi

bivds, ∀v∈H1
0(Ω). (2.4)

Define the broken Sobolev space

H̃2(Ω)=
{

v∈H1(Ω) : v|Ωi ∈H2(Ωi), [β∇u·n]Γi =bi, i=1,2,3
}

,

equipped with the norm

‖u‖2
H̃2(Ω)=‖u‖

2
H1(Ω)+

3

∑
i=1
|u|2H2(Ωi)

.

The following regularity result holds [5]:

Theorem 2.1. Assume that f ∈ L2(Ω), gi ∈H3/2(∂Ωi∩∂Ω), for i = 1,2,3. Then the problem
(2.1a)-(2.3) has a unique solution u∈H1(Ω) such that for some constant C>0,

‖u‖H̃2(Ω)≤C

(
‖ f ‖L2(Ω)+

3

∑
i=1
‖bi‖H1/2(Γi)

+
3

∑
i=1
‖gi‖H3/2(∂Ωi∩∂Ω)

)
. (2.5)

3 Immersed finite element method

Let Th be an interface-independent triangulation of Ω. Since we do not require the mesh
to be aligned with interfaces, Th can be chosen as Cartesian mesh in actual computation.
Let Nh be the set of all mesh points of Th. We denote by N i

h =Nh∩Ω and N b
h =Nh∩∂Ω

the collections of interior nodes and boundary nodes, respectively.
If the interfaces intersect the interior of an element, it is called an interface element;

otherwise, it is called a non-interface element. The set of elements Th is categorized into
T i

h and T n
h , representing the collections of interface elements and non-interface elements,
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respectively. Particularly for this triple junction point problem, the set of interface ele-
ments T i

h can be subdivided as follows

T i
h,1={T∈T i

h : T intersects only one interface among Γ1, Γ2, Γ3},
T i

h,2={T∈T i
h : T intersects two interfaces among Γ1, Γ2, Γ3},

T i
h,3={T∈T i

h : T intersects three interfaces among Γ1, Γ2, Γ3}.

Then, we have
Th =T n

h ∪T i
h,1∪T i

h,2∪T i
h,3. (3.1)

3.1 Local approximating functions

In this subsection, we construct the local approximating functions for each group of el-
ements in (3.1). First, we note that if T ∈T n

h , i.e., T is a non-interface element, then we
use the standard P1 finite element nodal basis functions. If T∈T i

h,1, then T only intersects
with one interface. In this case, we follow the classical immersed finite element nodal
basis construction as discussed in [23]. In the following, we focus on the remaining two
cases.

3.1.1 The case T∈T i
h,2

In this case, the element T intersects with two interfaces, denoted by Γs and Γt. Their
line approximation Γ̄s=Γ1

s Γ2
s and Γ̄t=Γ1

t Γ2
t are disjoint inside T. These two line segments

subdivide the element T into three parts, denoted by Ta, Tb and Tc. See Fig. 2 for an
illustration of the geometrical configuration of this case.
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Figure 2: A typical element with two disjoint interfaces.
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The local basis functions φi,T, i= 1,2,3, are formed as the following piecewise linear
functions

φi,T(x)=


φa

i,T(x)= a1x+b1y+c1, if x∈Ta,
φb

i,T(x)= a2x+b2y+c2, if x∈Tb,
φc

i,T(x)= a3x+b3y+c3, if x∈Tc.
(3.2)

For each basis function, there are nine coefficients to be determined. We impose the
following conditions to determine these coefficients.

• three nodal value conditions

φi,T(Aj)=δij, ∀j=1,2,3. (3.3)

• four restrictions for the continuity of basis functions

φa
i,T(Γ

l
s)=φb

i,T(Γ
l
s), φb

i,T(Γ
l
t)=φc

i,T(Γ
l
t), ∀l=1,2. (3.4)

• two restrictions for normal flux continuity

[β∇φi,T ·n]Γs =0, [β∇φi,T ·n]Γt =0. (3.5)

Direct calculation by verifying the determinant of the 9×9 matrix being nonzero yields
the existence and uniqueness of the IFE basis functions. The local IFE space on T for
homogeneous flux jump case is formed as Sh(T)= span{φ1,T,φ2,T,φ3,T}.

To handle the non-homogeneous flux jump conditions (2.3), we enrich the space Sh(T)
by adding two more piecewise linear basis functions φs

T,J and φt
T,J also in the form of (3.2)

such that

φs
T,J(Aj)=0, ∀j=1,2,3,

[φs
T,J(Γ̄s)]=0, [φt

T,J(Γ̄s)]=0,

[β∇φs
T,J ·n]Γs =1, [β∇φs

T,J ·n]Γt =0,

and

φt
T,J(Aj)=0, ∀j=1,2,3,

[φt
T,J(Γ̄s)]=0, [φt

T,J(Γ̄t)]=0,

[β∇φt
T,J ·n]Γs =0, [β∇φt

T,J ·n]Γt =1.

We note that the matrix system for determine the homogeneous basis functions φi,T and
the non-homogeneous basis functions φs

T,J and φt
T,J are exactly the same. Therefore, the

existence and uniqueness of φi,T automatically imply the existence and uniqueness of φt
T,J

and φs
T,J . Define the local IFE flux jump space SJ

h(T)= span{φt
T,J ,φ

s
T,J}. Now the enriched
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Figure 3: IFE basis function of 3.1.1 (left), flux jump function (right).

local IFE space on the element T is defined by S̃h(T)=Sh(T)∪SJ
h(T). The Lagrange type

interpolation Ih,T : H̃2(T)→ S̃h(T) is defined as follows

Ih,Tu(x)=
3

∑
i=1

u(Ai)φi,T(x)+qs
Tφs

T,J(x)+qt
Tφt

T,J(x), x∈T. (3.6)

Here, the arguments qk
T, k= s,t take the average of flux jump along the interface:

qk
T =

∫
Γk∩T[β∇u·n]ds

|Γ̄k|
, (3.7)

where |Γ̄k| is the length of Γ̄k. A typical IFE basis function and an IFE flux basis function
are plotted in Fig. 3.

Remark 3.1. A special case for T ∈ T i
h,2 is that the intersection of two interfaces Γ̄s and

Γ̄t is on the boundary of T, as depicted in Fig. 4. In this situation, the element T is still
divided into three pieces, but two interface points Γ1

s and Γ2
t coincide. The construction

of IFE basis functions follows exactly the same procedure.

3.1.2 The case T∈T i
h,3

In this case, the element T intersects with all three interfaces Γ1, Γ2 and Γ3 at points Γ0
1,

Γ0
2 and Γ0

3, respectively. The line approximations of the interfaces are denoted by Γ̄i=Γ0
i P

where P is the triple junction point. There are two geometrical configurations in this case,
which are illustrated in Fig. 5. The construction of the basis functions is quite similar for
these two cases, so we only consider the one where the interfaces cut at three different
edges of T.
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Figure 4: A special case of T∈T i
h,2.
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Figure 5: Two possible interface elements containing the triple junction point.

We construct the piecewise linear local basis functions φi,T, i= 1,2,3 in the following
form

φi,T(x)=


φ1

i,T(x)= a1x+b1y+c1, if x∈T1,

φ2
i,T(x)= a2x+b2y+c2, if x∈T2,

φ3
i,T(x)= a3x+b3y+c3, if x∈T3.

(3.8)

As before, we require the nodal-value and jump conditions as follows

• three nodal value conditions

φi,T(Aj)=δij, ∀i, j=1,2,3. (3.9)
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• five continuity conditions of the basis functions

φ2
i,T(Γ

0
1)=φ3

i,T(Γ
0
1), φ3

i,T(Γ
0
2)=φ1

i,T(Γ
0
2), φ1

i,T(Γ
0
3)=φ2

i,T(Γ
0
3), (3.10a)

φ1
i,T(P)=φ2

i,T(P), φ2
i,T(P)=φ3

i,T(P). (3.10b)

• three conditions of normal flux continuity

[β∇φi,T ·n]Γ̄1
=0, [β∇φi,T ·n]Γ̄2

=0, [β∇φi,T ·n]Γ̄3
=0. (3.11)

We note that (3.9)-(3.11) provide eleven restrictions, which usually lead to an overdeter-
mined linear system of nine unknowns in (3.8). As in [17], the least squares approxima-
tion is used to ensure the solvability of the system. After obtaining the basis functions,
we can form the local IFE space Sh(T)= span{φ1,T,φ2,T,φ3,T}.

For the case with non-homogeneous jump, we enrich the local IFE space by adding
three local functions φi

T,J , i=1,2,3 such that

φi
T,J(Aj)=0, [φi

T,J(Γ̄j)]=0, [β∇φi
T,J ·n]Γ̄j

=δij, ∀j=1,2,3.

Define the local flux jump space by SJ
h(T)= span{φ1

T,J ,φ
2
T,J ,φ

3
T,J}. Then the enriched local

IFE space on the element T is S̃h(T) = Sh(T)∪SJ
h(T). The Lagrange type interpolation

Ih,T : H̃2(T)→ S̃h(T) is as follows

Ih,Tu(X)=
3

∑
i=1

u(Ai)φi,T(X)+
3

∑
k=1

qk
Tφk

T,J(X), (3.12)

where

qk
T =

∫
Γk∩T[β∇u·n]ds

|Γ̄k|
. (3.13)

In Fig. 6 and Fig. 7, we plot IFE basis functions and the flux basis functions on triple
junction interface elements of both geometrical configurations as in Fig. 5.

3.2 Global IFE space

Now we form the global IFE basis function by gluing together local basis functions that
share the same node. Associated with each node xi∈Nh on the mesh, we define a global
IFE basis function Φi such that the restriction Φi|T is the local IFE basis functions we
defined in previous subsection.

We define the global IFE space Sh(Th)= span{Φi,i= 1,2,··· ,|Nh|} and the following
two spaces taking into account of the boundary conditions

S0
h(Th)={v∈Sh(Th) : v(x)=0, ∀x∈N b

h },
Sg

h(Th)={v∈Sh(Th) : v(x)= g(x), ∀x∈N b
h }.
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Figure 6: IFE basis function of 3.1.3 (left), flux jump function (right).
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Figure 7: IFE basis function of 3.1.3 (left), flux jump function (right).

For non-homogeneous conditions, we define the global flux jump basis function as

Φj
T,J(x)=

{
φ

j
T,J(x), x∈T,

0, x /∈T.

Here, the value j depends on the type of interface elements. The IFE flux jump space
is defined as SJ

h(Th) = span{Φj
T,J , ∀T ∈ T i

h }. Then the enriched global IFE space can be

written as S̃h(Th)=Sh(Th)∪SJ
h(Th).

The IFE approximation is to find a function ũh∈ S̃h(Th) in the following form

ũh =uh+uJ
h = ∑

i∈Nh

uiΦi+ ∑
T∈T i

h

3

∑
j=1

qj
TΦj

T,J , (3.14)

where the uJ
h∈SJ

h(Th) is a function that we construct to approximate the non-homogeneous
flux jump. The global interpolation operator Ih :H̃2(Ω)→S̃h(Th) is defined in the standard
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manner as

Ih(u)|T = Ih,T(u), ∀T∈Th.

Finally, the IFE method for solving the interface problem (2.1a)-(2.3) is to find uh∈Sg
h(Th)

such that

∑
T∈Th

∫
T

β∇huh ·∇hvdx=
∫

Ω
f vdx−

3

∑
k=1

∫
Γk

bkvds−
∫

Ω
β∇huJ

h ·∇hvdx, ∀v∈S0
h(Th), (3.15)

where ∇h denotes the broken gradient operator that operates on each piece of the ele-
ment.

Remark 3.2. The bilinear form on the left hand side of (3.15) is symmetric. The resulting
stiffness matrix of numerical scheme (3.15) is symmetric positive definite.

Remark 3.3. For multi-domain problems with more than three interfaces, the idea of
construction of the IFE basis functions can be extended naturally. Least squares approxi-
mation will be used for multiple intersecting interfaces.

4 Numerical experiments

In this section, we present some numerical examples to test the performance of the new
IFE method.

Example 4.1. In this example, we consider a domain separated by three straight line
interfaces. Let Ω=(−1,1)2. The interfaces are defined through the level set functions ϕi
as follows

ϕ1(x,y)= x+0.1y−0.055,
ϕ2(x,y)= x+0.2y−0.06,
ϕ3(x,y)=0.03x+y−0.0515.

The coefficient functions (β1,β2,β3)=(10,1,100). The exact solution of this problem is

u1(x,y)=
1
β1

sin(y+0.03x−0.0515)(x+0.2y−0.06),

u2(x,y)=
1
β2

sin(y+0.03x−0.0515)(x+0.1y−0.055),

u3(x,y)=
1
β3

sin(0.1y+x−0.055)(x+0.2y−0.06).

We use a family of uniformly refined Cartesian triangular meshes that consists of 2×
nx×ny triangles. The errors of interpolation using new IFE space are reported in Table
1. We can observe that both L2 norm and H1 norms seem to converge in optimal rate for
linear approximation. The errors of Galerkin IFE solutions are reported in Table 2. Fig. 8
displays the numerical solution on the 64×64 mesh.
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Table 1: Interpolation Error of Example 4.1 with (β1,β2,β3)=(10,1,100).

nx×ny ||Ihu−u||L2 order ‖Ihu−u‖H1 order
16×16 1.5087×10−3 6.0104×10−2

32×32 3.7538×10−4 2.01 3.0320×10−2 0.99
64×64 9.2808×10−5 2.02 1.5168×10−2 1.00

128×128 2.3133×10−5 2.00 7.5879×10−3 1.00

Table 2: Galerkin IFE Solution Error of Example 4.1 with (β1,β2,β3)=(10,1,100).

nx×ny ||uh−u||L2 order ‖uh−u‖H1 order
16×16 1.5436×10−3 6.3291×10−2

32×32 3.9297×10−4 1.97 3.1879×10−2 0.99
64×64 8.2307×10−5 2.26 1.5717×10−2 1.02

128×128 2.3532×10−5 1.81 7.8775×10−3 1.00
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Figure 8: The interface geometry and the numerical solution for Example 4.1.

Example 4.2. The second example is to test the capability of our numerical method for
the case when the triple junction point lies on the grid point. The domain Ω= (−1,1)2

and the level set functions ϕi are defined as follows

ϕ1(x,y)= x+0.1y,
ϕ2(x,y)= x+0.2y,
ϕ3(x,y)=0.03x+y.

This is a translation of the exact solution in Example 4.1. The exact solution of this prob-
lem is

u1(x,y)=
1
β1

sin(y+0.03x)(x+0.2y),



Y. Chen, S. M. Hou and X. Zhang / Adv. Appl. Math. Mech., 11 (2019), pp. 1-17 13

Figure 9: The interface geometry for Example 4.2.

Table 3: Interpolation Error of Example 4.2 with (β1,β2,β3)=(10,1,100).

nx×ny ||Ihu−u||L2 order ‖Ihu−u‖H1 order
10×10 4.0917×10−3 1.0035×10−1

20×20 1.0176×10−3 2.01 5.0309×10−2 1.00
40×40 2.5319×10−4 2.01 2.5182×10−2 1.00
80×80 6.2934×10−5 2.01 1.2595×10−2 1.00

160×160 1.5697×10−5 2.00 6.2998×10−3 1.00

Table 4: Galerkin IFE Solution Error of Example 4.2 with (β1,β2,β3)=(10,1,100).

nx×ny ||uh−u||L2 order ‖uh−u‖H1 order
10×10 3.8956×10−3 1.1554×10−1

20×20 1.0235×10−3 1.93 5.3793×10−2 1.10
40×40 2.3212×10−4 2.14 2.6246×10−2 1.04
80×80 5.9050×10−5 1.97 1.3063×10−2 1.01

160×160 1.6664×10−5 1.82 6.5707×10−3 0.99

u2(x,y)=
1
β2

sin(y+0.03x)(x+0.1y),

u3(x,y)=
1
β3

sin(0.1y+x)(x+0.2y).

We use a different set of triangular mesh starting from a 10×10 partition. In this way,
the triple junction point will coincide with a mesh point. See Fig. 9 for the geometrical
setting of this example. A small perturbation of 0.001 times the mesh size is used to
ensure the local system is solvable. The errors of interpolation and Galerkin IFE solution
are reported in Table 3 and Table 4, respectively. The numerical result shows that the
method is robust in terms of the location of the triple junction point. The error decay rate
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is similar as in previous example.

Example 4.3. In this example, we test our numerical scheme for curved interfaces. In
particular, the interfaces consist of a circle and a straight line. The interfaces are defined
by the level set functions

ϕ1(x,y)=4y−3x,

ϕ2(x,y)=−x2−y2+0.25,

ϕ3(x,y)= x2+y2−0.25.

The coefficient function is chosen as (β1,β2,β3) = (10,1,100). The exact solution is as
follows

u1(x,y)=
1
β1

((x2+y2)1.5−0.125),

u2(x,y)=
1
β2

(x2+y2−0.25)sin(3x−4y),

u3(x,y)=
1
β3

(3x−4y)ln(x2+y2+0.75).

To demonstrate the robustness of the numerical scheme with respect to the interface loca-
tion, we use two different families of meshes. In Table 5 and Table 6, we report the inter-
polation and Galerkin solution on a sequence of meshes starting from a 16×16 mesh. In
Table 7 and Table 8 we report the numerical results on a sequence of mesh starting from
a 10×10 mesh. Moreover, Fig. 10 shows the numerical solution on the 64×64 mesh.

Table 5: Interpolation Error of Example 4.3 with (β1,β2,β3)=(10,1,100).

nx×ny ||Ihu−u||L2 order ‖Ihu−u‖H1 order
16×16 3.7273×10−2 1.0526×10 0

32×32 9.4653×10−3 1.98 5.3219×10−1 0.98
64×64 2.3750×10−3 1.99 2.6690×10−1 1.00

128×128 5.9428×10−4 2.00 1.3357×10−1 1.00

Table 6: Galerkin IFE Solution Error of Example 4.3 with (β1,β2,β3)=(10,1,100).

nx×ny ||uh−u||L2 order ‖uh−u‖H1 order
16×16 1.3296×10−2 1.0652×10 0

32×32 2.7358×10−3 2.28 5.3537×10−1 0.99
64×64 6.0644×10−4 2.17 2.6790×10−1 1.00

128×128 1.5761×10−4 1.94 1.3403×10−1 1.00
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Figure 10: The interface geometry and numerical solution for Example 4.3.

Table 7: Interpolation Error of Example 4.3 with (β1,β2,β3)=(10,1,100) on different meshes.

nx×ny ||Ihu−u||L2 order ‖Ihu−u‖H1 order
10×10 9.2212×10−2 1.6465×10 0

20×20 2.4053×10−2 1.94 8.4657×10−1 0.96
40×40 6.0691×10−3 1.99 4.2637×10−1 0.99
80×80 1.5207×10−3 2.00 2.1361×10−1 1.00

160×160 3.8037×10−4 2.00 1.0687×10−1 1.00

Table 8: Galerkin IFE Solution Error of Example 4.3 with (β1,β2,β3)=(10,1,100) on different meshes.

nx×ny ||uh−u||L2 order ‖uh−u‖H1 order
10×10 3.4518×10−2 1.6876×10 0

20×20 8.2927×10−3 2.06 8.5755×10−1 0.98
40×40 1.6023×10−3 2.37 4.2850×10−1 1.00
80×80 3.6388×10−4 2.14 2.1434×10−1 1.00

160×160 9.2892×10−5 1.97 1.0727×10−1 1.00

5 Conclusions

In this paper, we develop an immersed finite element method to solve multi-domain in-
terface problem with triple junction points. We categorize elements according to their
geometric configurations. In the element that contains the triple junction points, we use
least squares fitting to uniquely determine the IFE basis functions. The numerical experi-
ments show the interpolation could achieve second order accuracy measured by L2 norm
and first order in H1 norm. The Galerkin method using this IFE functions is symmetric
positive definite. They can provide reasonably accurate solutions to the multi-domain
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interface problems.
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